

Insects Innovation in Gastronomy

COURSE SUPPORT

Module 3 Unit 2:

The Ecological Footprint of Traditional Crops vs. Insect Protein

Disclaimer:

This project is co-funded with the support of the European Union.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Project Number: 2023-1-ES01-KA220-VET-000150957

Course Support Environmental Sustainability in Gastronomy

Contents

N	1odule 3: Environmental Education in Gastronomy	. 1
U	nit 2: The Ecological Footprint of Traditional Crops vs. Insect Protein	. 1
	Key Insights & Takeaways	. 1
	Reducing Land Use with Insect Farming	. 1
	Water Consumption in Traditional Agriculture vs. Insect Protein	. 1
	Reducing Greenhouse Gas Emissions	. 1
	Health and Resource Efficiency in Insect Farming	. 2
	Final Thought	. 2

Course Support

Module 3 Unit 2: The Ecological Footprint of Traditional Crops vs. Insect Protein

Module 3: Environmental Education in Gastronomy

Unit 2: The Ecological Footprint of Traditional Crops vs. Insect Protein

Key Insights & Takeaways

- Insect production requires significantly less land compared to traditional agriculture, helping reduce deforestation.
- The water footprint of insect protein is dramatically lower than that of livestock farming.
- Greenhouse gas emissions from insect farming are up to 80-90% lower compared to traditional livestock farming.
- Insect-based protein can contribute to reducing the ecological footprint of food production.

Reducing Land Use with Insect Farming

Traditional livestock farming requires large amounts of land, leading to deforestation, particularly in vital ecosystems such as the Amazon rainforest. In contrast, insect farming operates efficiently in small, controlled environments, eliminating the need for additional land use.

Water Consumption in Traditional Agriculture vs. Insect Protein

The production of one kilogram of beef requires approximately 15,000 litres of water, whereas the same amount of insect protein requires less than one litre. This drastic difference highlights the sustainability of insect farming in conserving water resources.

Reducing Greenhouse Gas Emissions

Traditional agriculture and livestock farming are among the largest contributors to greenhouse gas emissions. Studies show that insect farming can reduce methane and carbon dioxide emissions by 80-90%, making it an environmentally friendly protein source.

Course Support

Module 3 Unit 2: The Ecological Footprint of Traditional Crops vs. Insect Protein

Health and Resource Efficiency in Insect Farming

Unlike traditional livestock, insects require minimal medical care and do not need antibiotics or extensive veterinary intervention. Their shorter production cycles and lower energy requirements make them a highly efficient and sustainable protein source.

Final Thought

As global food demands increase, reducing the ecological footprint of food production is crucial. Insect protein offers a viable, sustainable alternative to traditional livestock farming, helping conserve resources and protect the environment. By embracing alternative food sources, society can take meaningful steps toward a more sustainable future.